اثر یک دوره تمرین کراس فیت همراه با مصرف مکمل اسپیرولینا بر برخی از شاخص های استرس اکسیداتیو در مردان جوان ورزشکار

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، مازندران، ایران.

چکیده

 هدف: تمرینات ورزشی هدفمند با بهبود ظرفیت آنتی اکسیدانتی نقش اساسی در عملکرد قلبی تنفسی دارد. هدف مطالعه حاضر، بررسی اثر هشت هفته تمرینات کراس فیت همراه با مصرف مکمل اسپیرولینا بر سطوح سرمی مالون دی آلدئید، گلوتاتیون پراکسیداز و سوپراکسید دیسموتاز در مردان جوان ورزشکار بود.
روش شناسی: در این پژوهش نیمه تجربی، تعداد 20 ورزشکار با میانگین سنی 88/1±95/22 سال به طور تصادفی، در دو گروه دارونما (10 نفر) و مکمل (10 نفر) قرار گرفتند. گروه مکمل به طور همزمان با مصرف روزانه چهار عدد قرص (500 میلی‌گرمی) اسپیرولینا در یک برنامه تمرینی کراس فیت هشت هفته‌ای، سه جلسه به مدت 60 دقیقه و با شدت بالا شرکت کردند. نمونه‌گیری خونی 24 ساعت قبل و 48 ساعت بعد از دوره مداخلـه جهت اندازه‌گیری شاخص های فوق انجام شد. تحلیل داده‌ها با استفاده از آزمون t زوجی و تحلیل کوواریانس سطح معنی داری0.05≥ P انجام شد.
یافته‌ها: پس از هشت هفته تمرین، سطوح مالون دی‌آلدئید کاهش (0/02=P) و سطوح گلوتاتیون پرواکسیداز و سوپرا اکسید دیسموتاز افزایش معنی‌دار در گروه مکمل در مقایسه با گروه دارونما(تمرین کراس‌ فیت) نشان دادند (0/01=P). آزمون کوواریانس نشان داد که بین گروه‌ها تفاوت معنی‌داری وجود دارد. میزان مالون دی آلدئید (0/01= P)، سوپرا اکسید دیسموتاز (0/02= P) و گلوتاتیون پرواکسیداز(0/03= P) در گروه مکمل نسبت به دارونما بهبود یافته بود.
نتیجه‌گیری: به نظر می‌رسد تمرینات کراس فیت به همراه مصرف مکمل اسپیرولینا، می‌تواند موجب بهبود وضعیت آنتی‌اکسیدانی و کاهش آسیب اکسایشی و احتمالاً ارتقای عملکرد قلبی و تنفسی ورزشکاران شود.

تازه های تحقیق

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of a crossfit training period with spirulina supplementation on some indicators of oxidative stress in young male

نویسندگان [English]

  • Amirreza Ebrahimi Samarin
  • Shdmeher Mirdar
  • Khadije Nasiri
Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Mazandaran University, Babolsar, Mazandaran, Iran.
چکیده [English]

Aims: Targeted exercise training plays an essential role in cardiorespiratory function by improving antioxidant capacity. The aim of this study was to evaluate the effect of 8 weeks of cross-fit training with spirulina supplementation on serum levels of malondialdehyde, glutathione peroxidase and superoxide dismutase in young male athletes. Materials and Methods: In this quasi-experimental study, 20 athletes with an Average of 22.95 88±1.88 years were selected and randomly divided into two groups of placebo (n = 10) and supplement (n = 10). The supplement group participated in an 8-week crossfit exercise program for 3 sessions of 60 minutes while taking four spirulina tablets (500 mg) daily. Blood samples were taken 24 hours before and 48 hours after the intervention period to measure the above indicators. Data analysis was performed using paired t-test and analysis of covariance.
Results: After eight weeks of training, malondialdehyde levels decreased (P=0.02) and glutathione peroxidase and superoxide dismutase levels showed a significant increase in the supplement group compared with the placebo group (crossfit training).( P=0.01). Covariance test showed that there was a significant difference between the groups. Malondialdehyde (P=0.01), superoxide dismutase (P = 0.02) and glutathione peroxidase (P=0.03) were improved in the supplement group compared with placebo group.
Conclusion: It seems that crossfit training along with spirulina supplementation can improve antioxidant status and reduce oxidative damage and possibly improve cardiac and respiratory performance of athletes

کلیدواژه‌ها [English]

  • Cross-fit
  • Spirulina
  • Malondialdehyde
  • Superoxide dismutase
  • Glutathione peroxidase

Publisher: University of Kurdistan         Copyright © The Authors

This is an open access article distributed under the following Creative Commons license: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

 

[1] Thompson WR. Worldwide survey of fitness trends for 2015: what’s driving the market. ACSM's Health & Fitness Journal. 2014 Nov 1;18(6):8-17.
[2] Bergeron MF, Nindl BC, Deuster PA, Baumgartner N, Kane SF, Kraemer WJ, Sexauer LR, Thompson WR, O'Connor FG. Consortium for Health and Military Performance and American College of Sports Medicine consensus paper on extreme conditioning programs in military personnel. Current sports medicine reports. 2011 Nov 1;10(6):383-9.
[3] da Costa TS, Louzada CT, Miyashita GK, da Silva PH, Sungaila HY, Lara PH, Pochini AD, Ejnisman B, Cohen M, Arliani GG. CrossFit®: Injury prevalence and main risk factors. Clinics. 2019 Nov 25;74.
[4] Kliszczewicz B, John QC, Daniel BL, Gretchen OD, Michael ER, Kyle TJ. Acute exercise and oxidative stress: CrossFit™ vs. treadmill bout. Journal of human kinetics. 2015 Oct 14;47(1):81-90.
[5] Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe?. Journal of sport and health science. 2020 Sep 1;9(5):415-25.
[6] Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015 Jul 1;31(7-8):916-22..
[7] Baker LB, Rollo I, Stein KW, Jeukendrup AE. Acute effects of carbohydrate supplementation on intermittent sports performance. Nutrients. 2015 Jul 14;7(7):5733-63.8.
[8] Amirsasan R, Khodaei O, Vakili J. Effect of High Intensity Interval Training (HIIT) and aerobic continuous training on lipid profile, physiological indicators and aerobic and anaerobic performance in sedentary male. Journal of Applied Health Studies in Sport Physiology. 2017 Mar 21;4(1):28-36.(Persian)
[9] Murphy MP. How mitochondria produce reactive oxygen species. Biochemical journal. 2009 Jan 1;417(1):1-3.
[10] Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dynamic medicine. 2009 Dec;8(1):1-25.
[11] Tripathi P, Pandey S. L-arginine attenuates oxidative stress condition during cardiomyopathy.
[12] Soleimani S, TOFIGHI A, BABAEI S. Effect of six weeks aerobic training accompanied by dietary supplementation of spirulina on Oxidative stress index in obese inactive men followed by one session exhaustive exercise.(Persian)
[13] Deaton CM, Marlin DJ. Exercise-associated oxidative stress. Clinical Techniques in Equine Practice. 2003 Sep 1;2(3):278-91.
[14] Sandhu J, Dheera B, Shweta S. Efficacy of spirulina supplementation on isometric strength and isometric endurance of quadriceps in trained and untrained individuals–a comparative study. Ibnosina Journal of Medicine and Biomedical Sciences. 2010 Apr;2(02):79-86.
[15] Babaei M, Abdi A. A. Abbassi Daloii1, Javad Mehrabani, Effect of Spirulina Supplementation and Aerobic Training on Oxidative Stress in Overweight Elderly Men. Res Sport Sci Med Plants. 2021; 2 (5): 8-17.
[16] Lu HK, Hsieh CC, Hsu JJ, Yang YK, Chou HN. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. European journal of applied physiology. 2006 Sep;98:220-6.
[17] Butcher SJ, Neyedly TJ, Horvey KJ, Benko CR. Do physiological measures predict selected CrossFit® benchmark performance?. Open access journal of sports medicine. 2015 Jul 31:241-7.
[18] Yüksel O, Gündüz B, Kayhan M. Effect of Crossfit Training on Jump and Strength. Journal of Education and Training Studies. 2019 Jan;7(1):121-4.
[19] Dexheimer JD, Schroeder ET, Sawyer BJ, Pettitt RW, Aguinaldo AL, Torrence WA. Physiological performance measures as indicators of crossfit® performance. Sports. 2019 Apr 22;7(4):93.
[20] Aliniya N, Elmieh A, Fadaei Chafy MR. Interaction effect of combined exercise and supplementation with portulaca oleracea on liver enzymes in obese postmenopausal women with non-alcoholic fatty liver disease. Complementary Medicine Journal. 2020 Jun 10;10(1):68-79.(Persian)
[21] Ribeiro AS, Schoenfeld BJ, Fleck SJ, Pina FL, Nascimento MA, Cyrino ES. Effects of traditional and pyramidal resistance training systems on muscular strength, muscle mass, and hormonal responses in older women: A randomized crossover trial. The Journal of Strength & Conditioning Research. 2017 Jul 1;31(7):1888-96.
[22] Kumar P, Yadav B, Yadav S. Effect of zinc and selenium supplementation on antioxidative status of seminal plasma and testosterone, T4 and T3 level in goat blood serum. Journal of applied animal research. 2013 Dec 1;41(4):382-6.
[23] Ghorbanian B, Yousef S. The Effect of Incremental Interval Endurance Training with Portulaca Supplementation on the Antioxidant Biological Indices and Oxidative Stress in Non-active Girls. Journal of Sport Biosciences. 2019 Aug 23;11(2):131-46.(Persian)
[24] Karimiasl A, Ghasemikalateh F, Rahmani A, Norouzi HR. The Effect of High Intensity Interval Training and Endurance Training Along With Jujube Supplement Consumption on the State of Oxidative Stress and Antioxidant Capacities of Testicular Tissue of Immature Male Wistar Rats. Journal of Applied Health Studies in Sport Physiology. 2023 Mar 21;10(1):67-82.(Persian)
[25] Oliveira MA, Fagundes RL, Moreira EA, Trindade EB, Carvalho TD. Relation between anthropometric indicators and risk factors for cardiovascular disease. Arquivos brasileiros de cardiologia. 2010;94:478-85.
[26] Liu H, Sun Y, Zhao J, Dong W, Yang G. Effect of zinc supplementation on semen quality, sperm antioxidant ability, and seminal and blood plasma mineral profiles in cashmere goats. Biological trace element research. 2020 Aug;196:438-45.
[27] de Dios Alché J. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox biology. 2019 May 1;23:101136.
[28] Kawamura T, Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants. 2018 Sep 5;7(9):119.
[29] He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Frontiers in physiology. 2016 Nov 7;7:486.
[30] Shanmugam KR, Mallikarjuna K, Kesireddy N, Reddy KS. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and chemical toxicology. 2011 Apr 1;49(4):893-7.
[31] Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Molecular neurobiology. 2017 Jan;54:255-71.
[32] Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Molecular metabolism. 2017 Feb 1;6(2):174-84.
[33] Dong J, Chen P, Wang R, Yu D, Zhang Y, Xiao W. NADPH oxidase: a target for the modulation of the excessive oxidase damage induced by overtraining in rat neutrophils. International journal of biological sciences. 2011;7(6):881.
[34] Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support?. Research in sports medicine. 2019 Apr 3;27(2):147-65.