[1] N. Mathur, B.K. Pedersen, Exercise as a mean to control low-grade systemic inflammation, Mediators of inflammation 2008 (2009).
[2] T.W. Buford, M.B. Cooke, D.S. Willoughby, Resistance exercise-induced changes of inflammatory gene expression within human skeletal muscle, European journal of applied physiology 107(4) (2009) 463.
[3] M.C. Calle, M.L. Fernandez, Effects of resistance training on the inflammatory response, Nutrition research and practice 4(4) (2010) 259-269.
[4] A.M.W. Petersen, B.K. Pedersen, The anti-inflammatory effect of exercise, Journal of applied physiology 98(4) (2005) 1154-1162.
[5] L. Smith, A. Anwar, M. Fragen, C. Rananto, R. Johnson, D. Holbert, Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise, European journal of applied physiology 82(1-2) (2000) 61-67.
[6] J.R. Townsend, M.S. Fragala, A.R. Jajtner, A.M. Gonzalez, A.J. Wells, G.T. Mangine, E.H. Robinson, W.P. McCormack, K.S. Beyer, G.J. Pruna, β-Hydroxy-β-methylbutyrate (HMB)-free acid attenuates circulating TNF-α and TNFR1 expression postresistance exercise, Journal of Applied Physiology 115(8) (2013) 1173-1182.
[7] M.C. Uchida, K. Nosaka, C. Ugrinowitsch, A. Yamashita, E. Martins Jr, A.S. Moriscot, M.S. Aoki, Effect of bench press exercise intensity on muscle soreness and inflammatory mediators, Journal of sports sciences 27(5) (2009) 499-507.
[8] M. Sousa, V.H. Teixeira, J. Soares, Dietary strategies to recover from exercise-induced muscle damage, International journal of food sciences and nutrition 65(2) (2014) 151-163.
[9] S. Arbogast, M.B. Reid, Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287(4) (2004) R698-R705.
[10] B.K. Pedersen, L. Hoffman-Goetz, Exercise and the immune system: regulation, integration, and adaptation, Physiological reviews 80(3) (2000) 1055-1081.
[11] S.K. Powers, M.J. Jackson, Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production, Physiological reviews 88(4) (2008) 1243-1276.
[12] M. Gleeson, N.C. Bishop, D.J. Stensel, M.R. Lindley, S.S. Mastana, M.A. Nimmo, The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease, Nature reviews. Immunology 11(9) (2011) 607.
[13] D.C. Kluth, A.J. Rees, Inhibiting inflammatory cytokines, Seminars in nephrology, 1996, pp. 576-582.
[14] S.M. Opal, V.A. DePalo, Anti-inflammatory cytokines, Chest Journal 117(4) (2000) 1162-1172.
[15] K.A. Volaklis, I. Smilios, A.T. Spassis, C.E. Zois, H.T. Douda, M. Halle, S.P. Tokmakidis, Acute pro-and anti-inflammatory responses to resistance exercise in patients with coronary artery disease: a pilot study, Journal of sports science & medicine 14(1) (2015) 91.
[16] J.M. Wilson, R.P. Lowery, J.M. Joy, J.A. Walters, S.M. Baier, J.C. Fuller, J.R. Stout, L.E. Norton, E.M. Sikorski, S.M. Wilson, β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men, British Journal of Nutrition 110(03) (2013) 538-544.
[17] W.J. Kraemer, D.L. Hatfield, B.A. Comstock, M.S. Fragala, P.M. Davitt, C. Cortis, J.M. Wilson, E.C. Lee, R.U. Newton, C. Dunn-Lewis, Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise, Journal of the American College of Nutrition 33(4) (2014) 247-255.
[18] W.J. Kraemer, D.R. Hooper, T.K. Szivak, B.R. Kupchak, C. Dunn-Lewis, B.A. Comstock, S.D. Flanagan, D.P. Looney, A.J. Sterczala, W.H. DuPont, The addition of beta-hydroxy-beta-methylbutyrate and isomaltulose to whey protein improves recovery from highly demanding resistance exercise, Journal of the American College of Nutrition 34(2) (2015) 91-99.
[19] D.S. Rowlands, J.S. Thomson, Effects of β-hydroxy-β-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: A meta-analysis, The Journal of Strength & Conditioning Research 23(3) (2009) 836-846.
[20] E.A. Nunes, A.R. Lomax, P.S. Noakes, E.A. Miles, L.C. Fernandes, P.C. Calder, β-Hydroxy-β-methylbutyrate modifies human peripheral blood mononuclear cell proliferation and cytokine production in vitro, Nutrition 27(1) (2011) 92-99.
[21] J. Hoffman, Norms for fitness, performance, and health, Human Kinetics2006.
[22] A. Marchant, C. Bruyns, P. Vandenabeele, M. Ducarme, C. Gérard, A. Delvaux, D. De Groote, D. Abramowicz, T. Velu, M. Goldman, Interleukin‐10 controls interferon‐γ and tumor necrosis factor production during experimental endotoxemia, European journal of immunology 24(5) (1994) 1167-1171.
[23] V. Horsley, K.M. Jansen, S.T. Mills, G.K. Pavlath, IL-4 acts as a myoblast recruitment factor during mammalian muscle growth, Cell 113(4) (2003) 483-494.
[24] A.M. Gonzalez, J.R. Stout, A.R. Jajtner, J.R. Townsend, A.J. Wells, K.S. Beyer, C.H. Boone, G.J. Pruna, G.T. Mangine, T.M. Scanlon, Effects of β-hydroxy-β-methylbutyrate free acid and cold water immersion on post-exercise markers of muscle damage, Amino acids 46(6) (2014) 1501-1511.
[25] A.M. Gonzalez, M.S. Fragala, A.R. Jajtner, J.R. Townsend, A.J. Wells, K.S. Beyer, C.H. Boone, G.J. Pruna, G.T. Mangine, J.D. Bohner, Effects of β-hydroxy-β-methylbutyrate free acid and cold water immersion on expression of CR3 and MIP-1β following resistance exercise, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 306(7) (2014) R483-R489.
[26] J.R. Hoffman, Y. Gepner, J.R. Stout, M.W. Hoffman, D. Ben-Dov, S. Funk, I. Daimont, A.R. Jajtner, J.R. Townsend, D.D. Church, β-Hydroxy-β-methylbutyrate attenuates cytokine response during sustained military training, Nutrition Research 36(6) (2016) 553-563.
[27] S. Portal, A. Eliakim, D. Nemet, O. Halevy, Z. Zadik, Effect of HMB supplementation on body composition, fitness, hormonal profile and muscle damage indices, Journal of Pediatric Endocrinology and Metabolism 23(7) (2010) 641-650.
[28] S.M. Opal, J.C. Wherry, P. Grint, Interleukin-10: potential benefits and possible risks in clinical infectious diseases, Clinical infectious diseases 27(6) (1998) 1497-1507.
[29] Yan Wang, Research progress of relations between exercise training and obese chronic inflammatory, Journal of Chemical & Pharmaceutical Research 5(2) (2013) 829.
[30] D.C. Nieman, N.C. Bishop, Nutritional strategies to counter stress to the immune system in athletes, with special reference to football, Journal of sports sciences 24(07) (2006) 763-772.
[31] D.C. Nieman, D.A. Henson, J.M. Davis, E.A. Murphy, D.P. Jenkins, S.J. Gross, M.D. Carmichael, J.C. Quindry, C.L. Dumke, A.C. Utter, Quercetin's influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA, Journal of Applied Physiology 103(5) (2007) 1728-1735.
[32] D.C. Nieman, J.M. Davis, D.A. Henson, J. Walberg-Rankin, M. Shute, C.L. Dumke, A.C. Utter, D.M. Vinci, J.A. Carson, A. Brown, Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run, Journal of applied physiology 94(5) (2003) 1917-1925.
[33] A.V. Caris, E.T. Da Silva, S.A. Dos Santos, F.S. Lira, L.M. Oyama, S. Tufik, R.V.T. Dos Santos, Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions, Nutrients 8(11) (2016) 706.
[34] L. Hirose, K. Nosaka, M. Newton, A. Laveder, M. Kano, J. Peake, K. Suzuki, Changes in inflammatory mediators following eccentric exercise of the elbow flexors, Exerc Immunol Rev 10(75-90) (2004) 20.
[35] P.A. Della Gatta, A.P. Garnham, J.M. Peake, D. Cameron-Smith, Effect of exercise training on skeletal muscle cytokine expression in the elderly, Brain, behavior, and immunity 39 (2014) 80-86.
[36] J. Peake, K. Nosaka, M. Muthalib, K. Suzuki, Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors, Exercise immunology review 12 (2005) 72-85.
[37] M.W. Feinberg, M.K. Jain, F. Werner, N.E. Sibinga, P. Wiesel, H. Wang, J.N. Topper, M.A. Perrella, M.-E. Lee, Transforming growth factor-β1 inhibits cytokine-mediated induction of human metalloelastase in macrophages, Journal of Biological Chemistry 275(33) (2000) 25766-25773.
[38] K.A. Volaklis, I. Smilios, A.T. Spassis, C.E. Zois, H.T. Douda, M. Halle, S.P. Tokmakidis, Acute pro-and anti-inflammatory responses to resistance exercise in patients with coronary artery disease: a pilot study, Journal of sports science & medicine 14(1) (2015) 91-97.
[39] S. Hering, C. Jost, H. Schulz, B. Hellmich, H. Schatz, A. Pfeiffer, Circulating transforming growth factor β1 (TGFβ1) is elevated by extensive exercise, European journal of applied physiology 86(5) (2002) 406-410.
[40] A.-M. Touvra, K.A. Volaklis, A.T. Spassis, C.E. Zois, H. Douda, K. Kotsa, S.P. Tokmakidis, Combined strength and aerobic training increases transforming growth factor-beta1 in patients with type 2 diabetes, Hormones (Athens) 10(2) (2011) 125-30.
[41] P. Gordon, E. Vannier, K. Hamada, J. Layne, B. Hurley, R. Roubenoff, C. Castaneda-Sceppa, Resistance training alters cytokine gene expression in skeletal muscle of adults with type 2 diabetes, International journal of immunopathology and pharmacology 19(4) (2006) 739-749.
[42] I. Bautmans, R. Njemini, S. Vasseur, H. Chabert, L. Moens, C. Demanet, T. Mets, Biochemical changes in response to intensive resistance exercise training in the elderly, Gerontology 51(4) (2005) 253-265.
[43] B. Schober-Halper, M. Hofmann, S. Oesen, B. Franzke, T. Wolf, E.-M. Strasser, N. Bachl, M. Quittan, K.-H. Wagner, B. Wessner, Elastic band resistance training influences transforming growth factor-ß receptor I mRNA expression in peripheral mononuclear cells of institutionalised older adults: the Vienna Active Ageing Study (VAAS), Immunity & Ageing 13(1) (2016) 22.
[44] D.J. Grainger, Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis, Arteriosclerosis, thrombosis, and vascular biology 24(3) (2004) 399-404.