تاثیر هشت هفته تمرین استقامتی و مکمل یاری زنیان بر بیان ژن (Zip14 (Slc39a14 روده کوچک و بزرگ رت های نر نژاد ویستار

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 گروه تربیت بدنی، دانشگاه سراوان، سراوان، ایران

2 گروه علوم ورزشی، دانشکده علوم انسانی و اجتماعی، دانشگاه گلستان، گرگان، ایران

چکیده

هدف: روی (Zn) عنصری حیاتی برای عملکرد دستگاه گوارش است و هموستاز آن توسط انتقال‌دهنده‌هایی مانند Zip14 تنظیم می‌شود. Zip14 علاوه بر روی، آهن و منگنز را نیز منتقل کرده و بیان آن تحت تأثیر التهاب است. تمرین استقامتی شدید می‌تواند التهاب و استرس اکسیداتیو ایجاد کند، و مکمل‌یاری با گیاهان دارویی مانند بذر زنیان، که غنی از روی بوده و خواص ضدالتهابی دارد، ممکن است این پاسخ‌ها را تعدیل کند. هدف این مطالعه بررسی اثر هشت هفته تمرین استقامتی شدید و مکمل‌یاری با عصاره آبی بذر زنیان بر بیان ژن Zip14 در روده کوچک و بزرگ رت‌های نر بود.

روش شناسی: 24 سر رت نر نژاد ویستار به چهار گروه کنترل-سالین (SC)، تمرین-سالین (ST)، کنترل-زنیان (ZC) و تمرین-زنیان (ZT) تقسیم شدند. گروه‌های تمرینی به مدت 8 هفته (5 روز/هفته، 60 دقیقه/روز با سرعت 32 متر/دقیقه) روی تردمیل دویدند. گروه‌های مکمل، روزانه عصاره آبی زنیان (200 mg/kg) دریافت کردند. بیان نسبی ژن Zip14 در بافت روده کوچک و بزرگ اندازه‌گیری شد.

یافته ها: بیان ژن Zip14 در روده کوچک به‌طور قابل توجهی تحت تأثیر تیمارها قرار گرفت (سطح معنی‌داری P=0.006). به‌طور مشخص، بیان Zip14 در گروه ZT به طور معنی‌داری کمتر از گروه ST بود (P=0.005). در مقابل، هیچ تغییر معنی‌داری در بیان Zip14 در روده بزرگ مشاهده نشد (P=0.09).

نتیجه گیری: تمرین همراه با مکمل‌یاری زنیان منجر به کاهش قابل‌توجه بیان ژن Zip14 در روده کوچک گردید، در حالی که تأثیر معنی‌داری بر روده بزرگ نداشت. این یافته مؤید تنظیم بافت‌ویژه و وابسته به نوع مداخله برای Zip14 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Eight Weeks of Endurance Training and Ajwain Supplementation on Zip14 (Slc39a14) Gene Expression in the Small and Large Intestines of Male Wistar Rats.

نویسندگان [English]

  • araz nazari 1
  • yazgaldi nazari 2
1 Department of Physical Education, University of Saravan, Saravan, Iran
2 Department of Sport Sciences, Faculty of Humanities and Social Sciences, Golestan University, Gorgan, Iran
چکیده [English]

Aim: Zinc (Zn) is an essential element for gastrointestinal function, and its homeostasis is regulated by transporters such as Zip14. Zip14 not only transports zinc but also iron and manganese, and its expression is influenced by inflammation. Intense endurance exercise can induce inflammation and oxidative stress, while supplementation with medicinal plants such as Ajwain seed, which is rich in zinc and has anti-inflammatory properties, may modulate these responses. This study aimed to investigate the effects of eight weeks of intense endurance exercise and supplementation with aqueous extract of Ajwain seed on Zip14 gene expression in the small and large intestines of male rats.

Method: Twenty-four male Wistar rats were divided into four groups: control-saline (SC), exercise-saline (ST), control-Ajwain (ZC), and exercise-Ajwain (ZT). The exercise groups ran on a treadmill for 8 weeks (5 days/week, 60 minutes/day at a speed of 32 m/min). The supplementation groups received daily doses of aqueous Ajwain extract (200 mg/kg). Relative Zip14 gene expression was measured in the small and large intestine tissues.

Results: Zip14 gene expression in the small intestine was significantly affected by the treatments (P=0.006). Specifically, Zip14 expression in the ZT group was significantly lower than in the ST group (P=0.005). Conversely, no significant changes in Zip14 expression were observed in the large intestine (P=0.09).

conclusion: Training combined with Ajwain supplementation led to a significant downregulation of Zip14 gene expression in the small intestine, whilst having no significant effect on the large intestine. This finding suggests tissue-specific and intervention-dependent regulation of Zip14

کلیدواژه‌ها [English]

  • Intense Endurance Training
  • Ajwain
  • Zip14 (Slc39a14)
  • Small Intestine
  • Large Intestine
  • [1] Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013;18(2):144-157. doi: https://pubmed.ncbi.nlm.nih.gov/23914218/
  • [2] Prasad AS. Zinc in human health: effect of zinc on immune cells. Mol Med. 2008;14(5-6):353-357. doi: https://doi.org/10.2119/2008-00033.Prasad
  • [3] Hojyo S, Fukada T. Roles of zinc signaling in the immune system. J Immunol Res. 2016;2016:6762343. doi: https://doi.org/10.1155/2016/6762343
  • [4] Skrovanek S, DiGuilio K, Bailey R, et al. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol. 2014;5(4):496-513. doi: http://dx.doi.org/10.4291/wjgp.v5.i4.496
  • [5] Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of intestinal epithelial homeostasis by zinc transporters. Dig Dis Sci. 2019;64(9):2404-2415. doi: https://doi.org/10.1007/s10620-019-05561-2
  • [6] Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749-784. doi: https://doi.org/10.1152/physrev.00035.2014
  • [7] Lichten LA, Cousins RJ. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009;29:153-176. doi: https://doi.org/10.1146/annurev-nutr-033009-083312
  • [8] Young JD, Yao SY, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med. 2013;34(2-3):529-547. doi: https://doi.org/10.1016/j.mam.2012.05.007
  • [9] Cragg RA, Christie GR, Phillips SR, et al. A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem. 2002;277(25):22789-22797. doi: https://doi.org/10.1074/jbc.M200577200
  • [10] Colvin RA, Holmes WR, Fontaine CP, Maret W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics. 2010;2(5):306-317. doi: https://doi.org/10.1039/b926662c
  • [11] Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612-13617. doi: https://doi.org/10.1073/pnas.0606424103
  • [12] Aydemir TB, Thorn TL, Ruggiero CH, et al. Intestine-specific deletion of metal transporter Zip14 (Slc39a14) causes brain manganese overload and locomotor defects of manganism. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G673-G681. doi: https://doi.org/10.1152/ajpgi.00301.2019
  • [13] Girijashanker K, He L, Soleimani M, et al. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol. 2008;73(5):1413-1423. doi: https://doi.org/10.1124/mol.107.043588
  • [14] Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem. 2003;278(35):33474-33481. doi: https://doi.org/10.1074/jbc.M305000200
  • [15] Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A. 2005;102(19):6843-6848. doi: https://doi.org/10.1073/pnas.0502257102
  • [16] Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):1077-1087. doi: https://doi.org/10.1152/japplphysiol.00622.2016
  • [17] Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243-1276. doi: https://doi.org/10.1152/physrev.00031.2007
  • [18] Van Wijck K, Lenaerts K, Van Loon LJ, Peters WH, Buurman WA, Dejong CH. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011;6(7):e22366. doi: https://doi.org/10.1371/journal.pone.0022366
  • [19] Micheletti A, Rossi R, Rufini S. Zinc status in athletes: relation to diet and exercise. Sports Med. 2001;31(8):577-582. doi: https://doi.org/10.2165/00007256-200131080-00002
  • [20] Bairwa R, Sodha R, Rajawat BS. Trachyspermum ammi. Pharmacogn Rev. 2012;6(11):56-60. doi:10.4103/0973-7847.95871
  • [21] Boskabady MH, Alitaneh S, Alavinezhad A. Carum copticum L.: a herbal medicine with various pharmacological effects. Biomed Res Int. 2014;2014:569087. doi: https://doi.org/10.1155/2014/569087
  • [22] Siddiquie F, Ahsan F, Mahmood T, Ahmad MA, Singh A, Bano S. Unlocking the food treasures: Trachyspermum ammi–A comprehensive exploration from field to pharmacology. Food Saf Health. 2024;2(3):322-343. doi: https://doi.org/10.1002/fsh3.12043
  • [23] Ranjbaran A, Kavoosi G, Mojallal-Tabatabaei Z, Ardestani SK. The antioxidant activity of Trachyspermum ammi essential oil and thymol in murine macrophages. Biocatal Agric Biotechnol. 2019;20:101220. doi: https://doi.org/10.1016/j.bcab.2019.101220
  • [24] Nazari A, Ghanbari-Niaki A, Nasiri K. The Selected Zinc Transporters (ZnT and ZIP) Gene Expression, Zinc, Iron and Glycogen Concentrations in Healthy Rat Testis: Effect of Aqueous Ajwain (Tracispermum ammi) Seeds Powder Extraction and High-intensity Treadmill Running. J Chem Health Risks. 2024;14(4):[In Press]. doi: https://doi.org/10.60829/jchr.2024.3121949
  • [25] Niaki AG, Nazari A, Nasiri K. Intense Endurance Running Training and Supplementation with the Aqueous Extract of Ajwain Seed: Effect on the Levels of Zinc and Some zinc Transporters in the Liver Tissue of Male Wistar Rats. J Anim Biol. 2024;16(4):83-97. doi:10.61186/jab.16.4.83
  • [26] Tinkov AA, Gatiatulina ER, Popova EV, et al. Early high-fat feeding induces alteration of trace element content in tissues of juvenile male Wistar rats. Biol Trace Elem Res. 2017;175(2):367-374. doi: https://doi.org/10.1007/s12011-016-0777-1
  • [27] Handa SS, Khanuja SPS, Longo G, Rakesh DD, eds. Extraction Technologies for Medicinal and Aromatic Plants. ICS-UNIDO; 2008, https://www.unido.org/sites/default/files/2009-10/Extraction_technologies_for_medicinal_and_aromatic_plants_0.pdf
  • [28] Javed I, Iqbal Z, Rahman ZU, Khan FH, Muhammad F, Aslam B, Ali L. Comparative antihyperlipidaemic efficacy of Trachyspermum ammi extracts in albino rabbits. Pak Vet J. 2006;26(1):23-29, Doi: https://doi.org/10.2754/avb200978020229
  • [29] Ghanbari-Niaki A, Rahmati-Ahmadabad S. Effects of a fixed-intensity of endurance training and pistacia atlantica supplementation on ATP-binding cassette G4 expression. Chin Med. 2013;8:16. doi: https://doi.org/10.1186/1749-8546-8-23
  • [30] Ghanbari-Niaki A, Ghanbari-Abarghooi S, Rahbarizadeh F, et al. Heart ABCA1 and PPAR-α genes expression responses in male rats: effects of high intensity treadmill running training and aqueous extraction of black crataegus-pentaegyna. Res Cardiovasc Med. 2013;2(4):153-159. doi: 10.5812/cardiovascmed.13892
  • [31] Van Pelt LF. Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc. 1977;171(9):842-844, Doi: https://avmajournals.avma.org/view/journals/javma/171/9/javma.1977.171.09.842.xml
  • [32] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-408. doi: https://doi.org/10.1006/meth.2001.1262
  • [33] Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure–function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579(2):427-432. doi: https://doi.org/10.1016/j.febslet.2004.12.006
  • [34] Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise‐induced gastrointestinal syndrome—implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46(3):246-265. doi: https://doi.org/10.1111/apt.14157
  • [35] Aydemir TB, Cousins RJ. The multiple faces of the metal transporter ZIP14 (SLC39A14). J Nutr. 2018;148(2):174-184. doi: https://doi.org/10.1093/jn/nxx041
  • [36] Aydemir TB, Kim MH, Kim J, et al. Metal transporter Zip14 (Slc39a14) deletion in mice increases manganese deposition and produces neurotoxic signatures and diminished motor activity. J Neurosci. 2017;37(25):5996-6006. doi: https://doi.org/10.1523/JNEUROSCI.0285-17.2017
  • [37] Guthrie GJ, Aydemir TB, Troche C, Martin AB, Chang SM, Cousins RJ. Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function. Am J Physiol Gastrointest Liver Physiol. 2015;308(3):G171-G178. doi: https://doi.org/10.1152/ajpgi.00021.2014
  • [38] Khavidaki AD, Ghanbari-Niaki A, Nasiri K, Khavidaki MH. Zinc Transporters in the Livers of Healthy Male Wistar Rats: An Investigation of the Effects of Aerobic Exercise and Supplementation with Pumpkin Seed and White Pea. Zahedan J Res Med Sci. 2023;26(1):e136362. doi: https://doi.org/10.5812/zjrms-137982.
دوره 3، شماره 3
مهر 1403
صفحه 50-39
  • تاریخ دریافت: 12 اردیبهشت 1404
  • تاریخ بازنگری: 05 خرداد 1404
  • تاریخ پذیرش: 05 خرداد 1404
  • تاریخ اولین انتشار: 05 خرداد 1404